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Quantum automata are mathematical models for quantum computing. We analyze
the existing quantum pushdown automata, propose aq quantum pushdown automata
(qQPDA), and partially clarify their connections. We emphasize some advantages of
ourqQPDA over others. We demonstrate the equivalence betweenqQPDA and another
QPDA. We indicate thatqQPDA are at least as powerful as the QPDA of Moore and
Crutchfield with accepting words by empty stack. We introduce the quantum languages
accepted byqQPDA and prove that everyη-q quantum context-free language is also an
η′-q quantum context-free language for anyη ∈ (0, 1) andη′ ∈ (0, 1).
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1. INTRODUCTION

In the early 1980s, pioneers in quantum computation, such as Benioff (1980),
Feynman (1982, 1986), and Deutsch (1985), initially considered the necessity for
constructing quantum computers. Benioff (1980) showed that computing devices
obeying the principles of quantum physics, that is, unitary quantum evolution,
are at least as powerful as a classical computer. By taking a different approach,
Feynman (1982, 1986) gave an argument which suggested that the models of
computation according to quantum mechanical processes might be beyond any
traditional computing machines for solving some problems. Afterwards, Deutsch
(1985) proposed the so-called Church–Turing principle and defined quantum com-
putational models-quantum Turing machines. In recent years, quantum computa-
tion and quantum information have become a more and more active research field
(Nielsen and Chuang, 2000). To a certain extent, this may originate from some dis-
coveries of algorithms Shor (1994) which are ineffective on classical computers.
However, there are some limitations and restrictions in quantum computation and
information due to the linearity and unitarity of quantum mechanics, for examples,
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the quantum no-cloning theorem (Wootters and Zurek, 1982) and the quantum
no-deleting principle (Pati and Braunstein, 2000). So it is of importance to clarify
the power of quantum computer (Bernstein and Vazirani, 1997; Yao, 1993).

Quantum automata are some simple mathematical models of computation,
so dealing with such models may contribute to further understanding the strengths
and weaknesses of quantum computing. Actually, there are considerable literature
in this research area (Gudder, 1999, 2000; Kondacs and Watrous, 1997; Moore
and Crutchfield, 2000) (The more literature is referred to Gruska, (1999) therein).
Because of the unitarity and linearity of quantum physics, there are some essen-
tial differences between quantum automata and traditional ones. For examples,
Moore and Crutchfield (Moore and Crutchfield, 2000) showed that there are regu-
lar languages but not quantum regular languages, and they also showed that there
are quantum context-free languages which are not context-free. In Qui (2002) we
demonstrated that there is an essential distinction between the sequential quantum
machines proposed by Gudder (2000) and the stochastic sequential machines (Paz,
1971). Besides, there are various quantum variants for each classical machine, such
as quantum finite-state automata having been differently defined in Gudder (1999),
Kondacs and Watrous (1997), and Moore and Crutchfield (2000). The relationship
between the Moore and Crutchfield’s quantum finite automata and the Kodacs
and Watrous’ ones is referred to Gruska (1999), while the connections of Gudder’s
quantum finite automata with those by Moore and Crutchfield are relatively clearer
and we discussed them in another paper (in Chinese). In a word, quantum gener-
alizations for classical models of computation are plentiful, and we naturally hope
to establish a more suitable framework of quantum automata theory.

As one of the most important quantum computational models after quantum
finite automata, quantum pushdown automata (QPDA) have been considerably
discussed (Golovkins, 2000; Gudder, 2000; Moore and Crutchfield, 2000). In this
paper, we aim to compare partially their connections, and present a QPDA more ap-
propriate to a certain extent. QPDA were first introduced in Moore and Crutchfield
(2000), but mainly the so-called generalized QPDA, in which the evolution op-
erators are not required to be unitary or, more relaxedly, isometric. As we know,
computation on quantum computers must be reversible, so we are more interested
in the unitary evolution automata. By using the definition of quantum finite au-
tomata in Kondacs and Watrous (1997), Golovkins (2000) introduced QPDA in an
nonequivalent way, compared with those by Moore and Crutchfield (2000), in a
way, just as the quantum finite automata defined by Kondacs and Watrous (1997)
are different from those by Moore and Crutchfield (2000). Although the QPDA
by Golovkins (2000) satisfy the unitary condition on evolution, the transition
amplitude function is required to fulfil the so-called well-formedness conditions
that are considerably complicated and tedious. So we also hope to simplify them.
Notably, Gudder (2000) also presented the definition of QPDA by directly general-
izing the classical deterministic pushdown automata (Hopcroft and Ullman, 1979).



P1: GRA

International Journal of Theoretical Physics [ijtp] pp620-ijtp-452093 October 28, 2002 14:11 Style file version May 30th, 2002

Quantum Pushdown Automata 1629

However, the transition operators defined in Gudder (2000) are just isometric but
not unitary. Therefore in what follows, our purpose is to attempt to establish a
more satisfactory QPDA, and to deal with some of its properties.

The organization of this paper is as follows: In Section 2, we proposeq quan-
tum pushdown automata (qQPDA) and also preliminarily compare them with the
existing QPDA by Moore and Crutchfield (2000), Gudder (2000), and Golovkins
(2000). Particularly, we demonstrate the equivalence betweenqQPDA and QPDA
by Moore and Crutchfield (2000) with accepting words by control states. We also
indicate thatqQPDA are at least as powerful as QPDA defined by Moore and
Crutchfield (2000) with accepting words by empty stack. In Section 3, we intro-
duce the quantum languages accepted byqQPDA, that is,η-q quantum context-
free language, and prove that everyη-q quantum context-free language is also
η′-q quantum context-free language for anyη ∈ [0, 1) andη′ ∈ (0, 1). Finally, in
Section 4, we summarize the results obtained and propose some open problems
for further study.

2. THE EQUIVALENCE BETWEEN QPDA

For convenience to understand our definition, let us first briefly recall classical
pushdown automata (Hopcroft and Ullman, 1979).

A pushdown automataM is a system (Q,6, 0, δ, q0, Z0, F), whereQ is
a finite set of states;6 is an input alphabet;0 is a stack’ alphabet;q0 ∈ Q and
Z0 ∈ 0 are called initial state and initial stack symbol, respectively;F ⊆ Q is the
set of final states; andδ is a mapping fromQ× (6 ∪ {ε})× 0 to P(Q× 0∗).
Furthermore, if the mappingδ satisfies (1)δ(q, a, Z) contains at least one element
for anyq ∈ Q, a ∈ 6 ∪ {ε} andZ ∈ 0, and (2)δ(q, ε, Z) being nonempty implies
thatδ(q, a, Z) is nonempty and vice versa, for anyq ∈ Q, Z ∈ 0 anda ∈ 6, then
M is called deterministic.

There are two fashions to define the languageL(M) accepted byM , that
is, one is by final state and the other by empty stack. As we know, they are
exactly equivalent, but for QPDA the problem is still open. Notably, in Moore and
Crutchfield (2000) the authors showed that quantum language accepted by empty
stack is also accepted by control state, but the other hand is not yet clear. In this
paper, we mainly consider the case of accepting language by control states. Now
we give a definition of QPDA. To avoid confusing with others, we call itqQPDA.

Definition 1. A q qQPDA is a six-tupleA = 〈Q,6, 0, δ, S, Q f 〉 where

(i) Q is a finite set of states;
(ii) 6 is an input alphabet;

(iii) 0 is a stack alphabet;
(iv) S= {(pi , αi , ci ) : pi ∈ Q, αi ∈ 0∗, ci ∈ C, i = 1, . . . , k} for some

natural numberk with 6k
i=1|ci |2 = 1 is a particular set called the set
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of start symbols. (It is different from the classical pushdown automata in
which only one initial stateq0 ∈ Q and one initial stack symbolZ0 ∈ 0
are required, and so in this definition the initial symbol may be looked
as a superposition of some states and strings of stack symbols.)

(v) Q f ⊆ Q is the set of final states;
(vi) δ is a mapping fromQ× 0∗ ×6 × Q× 0∗ to C satisfying for any

σ ∈ 6 and any (p1, γ1), (p2, γ2) ∈ Q× 0∗,
(I) δ(p1, γ1, σ, p2, γ2) can be nonzero amplitude only iftγ1 = γ2, γ1 = tγ2,

or γ1 = γ2 for somet ∈ 0.
(II) 6q∈Q,γ∈0∗δ(p1, γ1, σ, q, γ )δ(p2, γ2, σ, q, γ )∗

=
{

1, if ( p1, γ1) = (p2, γ2),
0, otherwise.

.

(III) 6p∈Q,γ∈0∗ |δ(p, γ , σ, p′, γ ′)|2 = 1 for any (p′, γ ′) ∈ Q× 0∗.
We define aquantum languagerecognized byqQPDAA as a function

fA(w) =
∑

qn∈Q f ,γn∈0∗

∣∣ ∑
(pi ,αi ,ci )∈S

ci

∑
q1,...,qn−1∈Q,γ1,...,γn−1∈0∗

δ(pi , αi , σ1, q1, γ1)

× δ(q1, γ1, σ2, q2, γ2) · · · δ(qn−1, γn−1, σn, qn, γn)
∣∣2 (1)

for anyw = σ1 · · · σn ∈ 6∗, and

fA(ε) =
∑
i∈Sf

∣∣ci

∣∣2
where Sf = {i : (pi , αi , ci ) ∈ S, pi ∈ Q f }. Particularly, if Sf = ∅ then
fA(ε) = 0.

By repeatedly utilizing (1) and Definition 1 (II), one can verify that for any
qQPDA A with input alphabet6, then fA(w) ∈ [0, 1] for any wordsw ∈ 6∗.
Now we give an example ofqQPDA.

Example 1. LetA = 〈{q1, q2}, {0, 1}, {B, R, G}, δ, {(q1, R, i )}, {q2}〉, whereδ is
defined as follows: For anyγ ∈ {B, R, G}∗

δ(q1, Rγ , 0,q1, B Rγ ) =
√

2
2

(
1
2 +

√
3

2 i
)

δ(q2, Rγ , 0,q1, B Rγ ) =
√

2
2 i

δ(q1, Rγ , 0,q1, B Rγ ) =
√

2
2 i δ(q2, Rγ , 0,q1, G Rγ ) =

√
2

2

(
1
2 −

√
3

2 i
)

δ(q1, Bγ , 1,q1, B Bγ ) =
√

2
2

(√
3

2 − 1
2 i
)
δ(q2, Bγ , 1,q1, B Bγ ) = 1

2 − i
2

δ(q1, Bγ , 1,q1, G Bγ ) = − 1
2 − i

2 δ(q2, Bγ , 1,q1, G Bγ ) =
√

2
2

(√
3

2 + 1
2 i
)

δ(q2, Gγ , 0,q2, GGγ ) = 1
4 −

√
7

4 i δ(q1, Gγ , 0,q2, GGγ ) = 5
8 +

√
7

8 i

δ(q2, Gγ , 0,q2, γ ) = − 5
8 +

√
7

8 i δ(q1, Gγ , 0,q2, γ ) = 1
4 +

√
7

4 i
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One can check readily that the above definitionA is aqQPDA. Furthermore, it is
easy to calculate thatfA(010)=

√
2

2 , and fA(ε) = 1.
To compare with the QPDA by Moore and Crutchfield (2000) we present

a more intuitive definition that is closely related to those defined in Moore and
Crutchfield (2000).

Definition 2. A QPDA is a five-tupleM = 〈HQ ⊗ H0,
∑

, |sinit〉, U, P(Haccept)〉
whereHQ is a finite-dimensional Hilbert space with an orthonormal basis vec-
tors Q (control states) andH0 is an infinite-dimensional Hilbert space whose
orthonormal basis vectors correspond to finite words over a stack alphabet0;
6 is an input alphabet;|sinit〉 is a unit initial vector of a superposition of finite
basis vectors inHQ ⊗ Hr , that is,|sinit〉 has a representation as follows:|sinit〉 =∑k

i=1 ci |pi 〉 ⊗ |αi 〉 wherepi ∈ Q, αi ∈ 0∗, ci ∈ C with
∑K

i=1 |ci |2 = 1; Hacceptis
a closed subspace ofHQ ⊗ H0 spanned by the set{|q〉 ⊗ |γ 〉 : q ∈ Qaccept, γ ∈
0∗} for someQaccept⊆ Q; U : 6 ∪ {ε} → U(HQ ⊗ H0) satisfies: for anyσ ∈ 6
and any (q1, γ1), (q2, γ2) ∈ Q× 0∗, the transition amplitude〈U (σ )(q1⊗ γ1), q2⊗
γ2〉, that is,〈γ2|〈q2|U (σ )|q1〉|γ1〉 can be nonzero only iftγ1 = γ2, γ1 = tγ2, or
γ1 = γ2 for somet ∈ 0.

We define the language recognized by QPDAM above as

fM(w) = ‖P(Haccept)U (w)|sinit〉‖2

for anyw ∈ 6∗.

Remark 1. In Moore and Crutchfield (2000)Hacceptin Definition 2 is defined as
a closed subspace spanned by{|q〉 ⊗ {ε} : q ∈ Qaccept} for someQaccept⊆ Q, and
in this case we callM an MCQPDA here. Meanwhile, it is well worth noticing
thatHacceptin Definition 2 is exactly equal to the subspace spanned by{|q〉 ⊗ |γ 〉 :
q ∈ Qaccept, γ ∈ 0∗} since0∗ is an orthonormal basis ofH0.

Lemma 1. (see Lemma 13 in Moore and Crutchfield (2000)) If a quantum lan-
guage is accepted by a QPDA by empty stack(in this case, Haccept is a closed
subspace spanned by{|q〉 ⊗ {ε} : q ∈ Q}), then it is also accepted by some QPDA
by control state(that is, Haccept is a closed subspace spanned by{|q〉 ⊗ |γ : q ∈
Qaccept, γ ∈ 0∗} for some Qaccept).

It directly follows from Lemma 1 that a quantum language accepted by an
MCQPDA is also accepted by some QPDA, but the converse conclusion is not
clear yet. As for the relation betweenqQPDA and QPDA, we have the following
theorem which shows that the classes of languages accepted by them are exactly
equivalent. So,qQPDA are at least as powerful as QPDA by Moore and Crutchfield
with accepting words by empty stack.
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Theorem 2. (1) For any qQPDAA = 〈Q,6, 0, δ, S, Q f 〉, there exists QPDA
M such that fA(w) = fM(w) for any w∈ 6∗. (2) For any QPDAM = 〈HQ ⊗
H0,6, sinit , U, P(Haccept)〉, there exists qQPDAA such that fA(w) = fM(w) for
any w∈ 6∗.

Proof: We just present the proof for (1), because in fact, the process of proof
for (2) is more simple relatively. Suppose thatS= {(pi , αi , ci ) : pi ∈ Q, αi ∈
0∗, ci ∈ C, i = 1, . . . , k} with

∑k
i=1 |ci |2 = 1, then constructM = 〈HQ ⊗ H0,

6, sinit , U, P(Haccept)〉 where |sinit〉 =
∑k

i=1 ci |pi 〉 ⊗ |αi 〉, and Haccept that is a
closed subspace ofHQ ⊗ H0, is spanned by{|q〉 ⊗ |γ 〉 : q ∈ Q f , γ ∈ 0∗}; and
for anyσ ∈ 6, U (σ ) is defined as follows: for any (q, γ ) ∈ Q× 0∗,

U (σ )(|q〉 ⊗ |γ 〉) =
∑

q′∈Q,γ ′∈0∗
δ(q, γ , σ, q′, γ ′)(|q′〉 ⊗ |γ ′〉). (2)

Now we have to show thatU (σ ) can be extended to be a unitary operator on
HQ ⊗ H0. First, it follows from (2) that for anyq1, q2 ∈ Q and anyγ1, γ2 ∈ 0∗,

〈U (σ )(|q1〉 ⊗ |γ1〉), U (σ )(|q2〉 ⊗ |γ2〉)〉

=
〈 ∑

q′1∈Q,γ ′1∈0∗
δ(q1, γ1, σ, q′1, γ ′1)(|q′1〉 ⊗ |γ ′1〉),

∑
q′2∈Q,γ ′2∈0∗

δ(q2, γ2, σ, q′2, γ ′2)(|q′2〉 ⊗ |γ ′2〉)
〉

=
∑

q∈Q,γ∈0∗
δ(q1, γ1, σ, q, γ ) · δ(q2, γ2, σ, q, γ )∗

= 〈|q1〉 ⊗ |γ1〉, |q2〉 ⊗ |γ2〉〉 =
{

1, if(q1, γ1) = (q2, γ2),

0, otherwise.

So for
∑∞

i=1 ci Ai with
∑∞

i=1 |ci |2 < ∞, whereAi ∈ {|q〉 ⊗ |γ 〉 : q ∈ Q, γ ∈ 0∗},
we may defineU (σ )(

∑∞
i=1 ci Ai ) =

∑∞
i=1 ci U (σ )Ai and easily show that‖U (σ )

|ψ〉‖ = ‖|ψ〉‖ for any|ψ〉 ∈ HQ ⊗ H0 and anyσ ∈ 6. Next let us define operator
U (σ )′ over HQ ⊗ H0 as

U (σ )′(|q〉 ⊗ |γ 〉) =
∑

q′∈Q,γ ′∈0∗
δ(q′, γ ′, σ, q, γ )∗|q′〉 ⊗ |γ ′〉

for any (q, γ ) ∈ Q× 0∗. Then it easily follows from Definition 1 (III) that‖U (σ )′

(|q〉 ⊗ |γ 〉)‖ = 1 for any (q, γ ) ∈ Q× 0∗, and thus operatorU (σ )′ can be ex-
tended toHQ ⊗ H0 as extendingU (σ ) above. Now we have

U (σ )′U (σ )(|q〉 ⊗ |γ 〉)
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= U (σ )′
( ∑

q′∈Q,γ ′∈0∗
δ(q, γ , σ, q′, γ ′)(|q′〉 ⊗ |γ ′〉)

)

=
∑

q′∈Q,γ ′∈0∗

(
δ(q, γ , σ, q′, γ ′)

( ∑
q′′∈Q,γ ′′∈0∗

δ(q′′, γ ′′, σ, q′, γ ′)∗(|q′′〉 ⊗ |γ ′′〉)
))

=
∑

q′′∈Q,γ ′′∈0∗

( ∑
q′∈Q,γ ′∈0∗

δ(q, γ , σ, q′, γ ′)δ(q′′, γ ′′, σ, q′, γ ′)∗
)

(|q′′〉 ⊗ |γ ′′〉)

= |q〉 ⊗ |γ 〉
and similarlyU (σ )U (σ )′(|q〉 ⊗ |γ 〉) = |q〉 ⊗ |γ 〉). SoU (σ )′ = U (σ )−1 and thus
U (σ ) is subjective. It follows from the basic properties of Hilbert spaces that
operatorU (σ ) is unitary. The remainder of the proof is to show thatfA(w) =
fM(w) for anyw ∈ 6∗. Consider two cases.

Case 1. w= ε. RecallSf = {i : (pi , αi , ci ) ∈ S, pi ∈ Q f }, then

fA(ε) =
∑
i∈Sf

|ci |2

and

fM(ε) = ‖P(Haccept)|sinit〉‖2

=
∥∥∥∥∥ ∑

q∈Q f ,γ∈0∗

〈
k∑

i=1

ci |pi 〉 ⊗ |γi 〉, |q〉 ⊗ |γ 〉
〉
|q〉 ⊗ |γ 〉

∥∥∥∥∥
2

=
∑

pi∈Q f

|ci |2 = fA(ε).

Case 2. w= σ1 · · · σn ∈ 6∗. For anyq ∈ Q andγ ∈ 0∗, we have

〈U (w)|sinit〉, |q〉 ⊗ |γ 〉〉

=
〈
U (σn) · · · U (σ1)

k∑
i=1

ci |pi 〉 ⊗ |αi 〉, |q〉 ⊗ |γ 〉
〉

=
k∑

i=1

ci 〈U (σn) . . . U (σ2)

×
( ∑

q1∈Q,γ1∈0∗
δ(pi , αi , σ1, q1, γ1)(|p1〉 ⊗ |γ1〉)

)
, |q〉 ⊗ |γ 〉

〉
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=
k∑

i=1

ci

∑
q1∈Q,γ1∈0∗

δ(pi , αi , σ1, q1, γ1)

〈
U (σn · · · U (σ3)

×
( ∑

q2∈Q,γ2∈0∗
δ(q1, γ1, σ2, q2, γ2)(|q2〉 ⊗ |γ2〉)

)
, |q〉 ⊗ |γ 〉

〉

=
k∑

i=1

ci

∑
q1∈Q,γ1∈0∗

∑
q2∈Q,γ2∈0∗

δ(pi , αi , σ1, q1, γ1) · δ(q1, γ1, σ2, q2, γ2)

×〈U (σn) · · · U (σ3)(|q2〉 ⊗ |γ2〉), |q〉 ⊗ |γ 〉〉

=
k∑

i=1

ci

∑
qi∈Q,γi∈0∗,i=1,...,n

δ(pi , αi , σ1, q1, γ1) ·
n−1∏
j=1

× δ(qj , γ j , σ j+1, qj+1, γ j+1)〈|qn〉 ⊗ |γn〉, |q〉 ⊗ |γ 〉〉

=
k∑

i=1

ci

∑
qi∈Q,γi∈0∗,i=1,...,n−1

δ(pi , αi , σ1, q1, γ1) ·
n−2∏
j=1

× δ(qj , γ j , σ j+1, qj+1, γ j+1) · δ(qn−1, γn−1, σn, q, γ ).

So

fM(w) = ‖P(Haccept)U (w)|sinit〉‖2

=
∑

q∈Q,γ∈0∗
|〈U (w)|sinit〉, |q〉 ⊗ |γ 〉〉|2

=
∑

q∈Q,γ∈0∗

∣∣∣∣∣ k∑
i=1

ci

∑
qi∈Q,γi∈0∗,i=1,...,n−1

δ(pi , αi , σ1, q1, γ1)

×
n−2∏
j=1

δ(qj , γ j , σ j+1, qj+1, γ j+1) · δ(qn−1, γn−1, σn, q, γ )

∣∣∣∣∣
2

= fA(w).

By combining the above two cases, we complete the proof. ¤

Remark 2. By utilizing Theorem 2 (1), one can straightforward construct a QPDA
M that is equivalent to theqQPDA defined as Example 1 as follows:M = 〈HQ ⊗
H0,6, sinit , U, P(Haccept)〉 whereHQ and H0 are two closed spaces spanned by
Q = {|q1〉, |q2〉} and{|γ 〉 : γ ∈ {B, R, G}∗}, respectively;Hacceptis a closed space
of HQ ⊗ H0 and it is spanned by{|q2〉 ⊗ |γ 〉 : γ ∈ 0∗};6 = {0, 1}; |sinit〉 = |q1〉;
andU is defined in terms of Eq. (2) and theδ in Example 1.
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Remark 3. From the above proof it is seen that the transition operators (please see
(2)) derived fromqQPDA can be extended to be unitary. In Section 1, we mentioned
various QPDA in the literature. To see the more advantages of theqQPDA, we
further outline briefly some other QPDA by Gudder (2000) and Golovkins (2000).
However, the QPDA defined by Golovkins require considerable conditions, so we
refer to Golovkins (2000) for the details. In Gudder (2000), a QPDA is defined as a
four-tupleA = (Q,6, 0, δ), whereQ,6, 0 are as inqQPDA (see Definition 1),
and transition amplitude functionδ from Q× 0 ∪ {ε} ×6 × Q× 0 ∪ {p}where
p means to pop a stack symbol off, to C satisfies∑

r,t

δ(s, v, x, r, t)δ(s′, v, x, r, t)∗ = δs,s′ , (3)

for everyv ∈ {ε} ∪ 0;∑
r

δ(s, v, x, r, p)δ(s′, v′, x, r, p)∗ = 0, (4)

for everyv, v′ ∈ {ε} ∪ 0, with v 6= v′; and∑
r

δ(s, v, x, r, t)δ(s′, v′, x, r, p)∗ = 0, (5)

for everyt ∈ 0, v ∈ {ε} ∪ 0, v′ ∈ 0. Gudder showed that the transition operators
defined in terms ofδ are isometric if and only if the above three conditions (3)–
(5) hold. So the transition operators in Gudder’s QPDA are not unitary but just
isometric, and notably, to a certain extent, Gudder’s QPDA may be looked as a
special case ofqQPDA.

3. QUANTUM LANGUAGES

In this section, we investigate some of the properties of quantum languages
recognized byqQPDA.

Definition 3. For any η ∈ [0, 1), an η-q quantum context-free language
(η- qQCFL) is defined as the set{w : fA(w) > η} denoted byLη(A) for some
qQPDAA.

Theorem 3. If L = Lη(A) is an η-qQCFL for 0≤ η < 1, then L is also an
η′-qQCFL for every0 < η′ < 1.

To prove Theorem 3 we need a lemma which shows that under certain con-
ditions, a weighted suma f + bg, wherea+ b = 1, of qQCFLs f andg is also a
qQCFL.
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Lemma 4. LetAi = 〈Qi ,6, 0, δi , Si , Q(i )
f 〉 be qQPDA, i= 1, 2, where Q1 ∩

Q2 = ∅. Then for any a, b ∈ C with |a|2+ |b|2 = 1, there exists qQPDAA with
input alphabet6 such that

fA(w) = |a|2 fA1(w)+ |b|2 fA2(w). (6)

Proof: Assume that Si = {(p(i )
j , α(i )

j , c(i )
j ) : p(i )

j ∈ Qi , α
(i )
j ∈ 0∗, c(i )

j ∈ C, j =
1, . . . , ki } with

∑ki
j=1 |c(i )

j |2 = 1, i = 1, 2. LetA = 〈Q1 ∪ Q2,6, 0, δ, S, Q(1)
f ∪

Q(2)
f 〉 where S= {(p(1)

i , α(1)
j , ac(1)

j ) : p(1)
j ∈ Q1, α(1)

j ∈ 0∗, c(1)
j ∈ C, j = 1, . . . ,

k1} ∪ {(p(2)
j , α(2)

j , ac(2)
j ) : p(2)

j ∈ Q2, α(2)
j ∈ 0∗, c(2)

j ∈ C, j = 1, . . . , k2}, δ is def-
ined as follows: for any (qi , γi ) ∈ (Q1 ∪ Q2)× 0∗ and anyσ ∈ 6, i = 1, 2,

δ(q1, γ1, σ, q2, γ2) =
 δ1(q1, γ1, σ, q2, γ2), if q1, q2 ∈ Q1,
δ1(q1, γ1, σ, q2, γ2), if q1, q2 ∈ Q2,
0, otherwise.

Now S satisfies
∑k

j=1 |ac(1)
j |2+

∑k
j=1 |bc(2)

j |2 = a2+ b2 = 1 and it is easy to
check thatδ meets the conditions (I), (II), and (III) in Definition 1. SoA is a
qQPDA. By utilizing the definitions offA, fA1, and fA2, one has no difficulty in
getting (6) and we omit the details here. ¤

The proof of Theorem 3: Assume thatA = 〈Q, S,6, δ, Q f 〉 whereS= {(pi ,
αi , ci ) : pi ∈ Q, αi ∈ 0∗, ci ∈ C, i = 1, . . . , k} with

∑k
i=1 |ci |2 = 1. We discuss

it by two cases.

Case 1. 0 < η′ < η < 1. LetA1 = 〈{q0, q2},6, 0, δ1, S1, Q(1)
f 〉 where{q0, q1}

∩Q = ∅, S1 = {(q0, α0, c0) :α0 ∈ 0∗, c0 ∈ C} with |c0| = 1, Q(1)
f = {q1}

andδ1 is defined as follows: for anyσ ∈ 6, and anyγ ∈ 0∗, δ1(q0, γ , σ, q0, γ ) =
δ1(q1, γ , σ, q1, γ ) = 1, and 0 otherwise. Then by a simple calculation one can see
thatA1 is a qQPDA and fA1(w) = 0 for anyw ∈ 6∗. According to Lemma 4,
for any a, b ∈ C with |a|2+ |b|2 = 1, we may construct aqQPDAA′ = 〈Q ∪
{q0, q1},6, 0, δ′, S′, Q f ∪ Q(1)

f 〉 where S′ = {(pi , αi , aci ), (q0, α0, bc0) :pi , αi ,
ci as in S, i = 1, . . . , k} andδ′ is defined asδ in the proof of Lemma 4. Then
it easily follows from the definition offA′ that for anyw ∈ 6∗,

fA′ (w) = |a|2 fA(w)+ |b|2 fA1(w) = |a|2 fA(w). (7)

Specially, takea =
√
η′
η

, andb =
√

1− η′
η

, then by (7) fA(w) > η if and only if

fA′ (w) > η′ and thereforeLη(A) = Lη′ (A′).
Case 2. 0≤ η < η′ < 1. Let A2 = 〈{q0},6, 0, δ2, S2, {q0}〉 where q0 ∈ Q,
S2 = {(q0, α0, c0) :α0 ∈ 0∗, c0 ∈ C} with |c0| = 1 andδ2 is defined as follows:
for anyσ ∈ 6 and anyγ ∈ 0∗, δ2(q0, γ , σ, q0, γ ) = 1 and 0 otherwise. Then it is
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easy to see thatA2 is a qQPDA and fA2(w) = 1 for any w ∈ 6∗. With A
andA2 we construct aqQPDA in terms of Lemma 4 as follows:A′′ = 〈Q ∪
{q0},6, 0, δ′′, S′′, Q f ∪ {q0}〉 where S′′ = {(pi , αi , aci ), (q0, α0, bc0) : pi , αi , ci

as in S, i = 1, . . . , k} with |a|2+ |b|2 = 1, δ′′ is defined asδ in the proof of
Lemma 4. Now sincefA2(w) = 1 for anyw ∈ 6∗, we have

fA′′ (w) = |a|2 fA(w)+ |b|2 fA2(w) = |a|2 fA(w)+ |b|2.
Let |a| =

√
1−η′
1−η and|b| =

√
η′−η
1−η , then

fA′′ (w) = 1− η′
1− η fA(w)+ η

′ − η
1− η ,

and it thus yields thatfA′′ (w) > η′ if and only if fA(w) > η, that is,Lη(A) =
Lη′ (A′′) also holds. Hence, the proof has been completed. ¤

4. CONCLUSION AND SOME PROBLEMS

We have proposedqQPDA, which, to a certain extent, have some advantages
than the other QPDA, which are embodied as follows: (i) quantum languages
recognized by MCQPDA (which was defined by Moore and Crutchfield (2000))
with empty stack are also accepted by someqQPDA; (ii) Gudder’s QPDA (Gudder,
2000) may be looked as a special case ofqQPDA, and particularly the transition
operators inqQPDA are exactly unitary, but those on Gudder’s ones are just
isometric; (iii) compared with QPDA by Golovkins (2000) the conditions for
transition functionδ onqQPDA are relatively relaxed (indeed, those conditions in
Golovkins (2000) are considerably complicated). We also discussed the properties
of the languages accepted byqQPDA, and especially prove that everyη-q quantum
context-free language is alsoη′-q quantum context-free language for anyη ∈ [0, 1)
andη′ ∈ (0, 1), which is interesting and corresponding to the similar property on
quantum regular languages investigated in Gudder (1999). Of course, to a great
extent, the strengths or weaknesses of automata may be manifested from their
recognizable ability, so there are three problems deserving to be further studied:

1. How to establish appropriate quantum grammars that derive the same class
of languages as that byqQPDA? Indeed, we have given quantum regular
grammars deriving the same class of languages as that by quantum finite-
state automata (Qiu and Ying, manuscript submitted for publication).

2. Languages accepted by quantum finite-state automata in Moore and
Crutchfield (2000) are recognized by some MCQPDA (Moore and
Crutchfield, 2000) and thus also by someqQPDA. However, there are reg-
ular languages but not quantum regular languages, in other words, some
regular languages cannot be accepted by any quantum finite-state automa-
ton in Moore and Crutchfield (2000). Naturally, one may ask whether
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any regular language can be recognized byqQPDA? Notably, Golovkins
(2000) showed that every regular language is recognizable by some QPDA
defined by himself.

3. What about the recognizable ability ofqQPDA compared with classical
pushdown automata (Hopcroft and Ullman, 1979) and probabilistic push-
down automata (Macarie and Ogihara, 1998)?
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