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Quantum automata are mathematical models for quantum computing. We analyze
the existing quantum pushdown automata, propogegaantum pushdown automata
(qQPDA), and partially clarify their connections. We emphasize some advantages of
ourgQPDA over others. We demonstrate the equivalence betg@&DA and another
QPDA. We indicate thatjQPDA are at least as powerful as the QPDA of Moore and
Crutchfield with accepting words by empty stack. We introduce the quantum languages
accepted bgQPDA and prove that everyq quantum context-free language is also an
n’-q quantum context-free language for apy (0, 1) andy’ € (0, 1).
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1. INTRODUCTION

In the early 1980s, pioneers in quantum computation, such as Benioff (1980),
Feynman (1982, 1986), and Deutsch (1985), initially considered the necessity for
constructing quantum computers. Benioff (1980) showed that computing devices
obeying the principles of quantum physics, that is, unitary quantum evolution,
are at least as powerful as a classical computer. By taking a different approach,
Feynman (1982, 1986) gave an argument which suggested that the models of
computation according to quantum mechanical processes might be beyond any
traditional computing machines for solving some problems. Afterwards, Deutsch
(1985) proposed the so-called Church—Turing principle and defined quantum com-
putational models-quantum Turing machines. In recent years, quantum computa-
tion and quantum information have become a more and more active research field
(Nielsen and Chuang, 2000). To a certain extent, this may originate from some dis-
coveries of algorithms Shor (1994) which are ineffective on classical computers.
However, there are some limitations and restrictions in quantum computation and
information due to the linearity and unitarity of quantum mechanics, for examples,
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the quantum no-cloning theorem (Wootters and Zurek, 1982) and the quantum
no-deleting principle (Pati and Braunstein, 2000). So it is of importance to clarify
the power of quantum computer (Bernstein and Vazirani, 1997; Yao, 1993).

Quantum automata are some simple mathematical models of computation,
so dealing with such models may contribute to further understanding the strengths
and weaknesses of quantum computing. Actually, there are considerable literature
in this research area (Gudder, 1999, 2000; Kondacs and Watrous, 1997; Moore
and Crutchfield, 2000) (The more literature is referred to Gruska, (1999) therein).
Because of the unitarity and linearity of quantum physics, there are some essen-
tial differences between quantum automata and traditional ones. For examples,
Moore and Crutchfield (Moore and Crutchfield, 2000) showed that there are regu-
lar languages but not quantum regular languages, and they also showed that there
are quantum context-free languages which are not context-free. In Qui (2002) we
demonstrated that there is an essential distinction between the sequential quantum
machines proposed by Gudder (2000) and the stochastic sequential machines (Paz,
1971). Besides, there are various quantum variants for each classical machine, such
as quantum finite-state automata having been differently defined in Gudder (1999),
Kondacs and Watrous (1997), and Moore and Crutchfield (2000). The relationship
between the Moore and Crutchfield’s quantum finite automata and the Kodacs
and Watrous’ ones is referred to Gruska (1999), while the connections of Gudder’s
guantum finite automata with those by Moore and Crutchfield are relatively clearer
and we discussed them in another paper (in Chinese). In a word, quantum gener-
alizations for classical models of computation are plentiful, and we naturally hope
to establish a more suitable framework of quantum automata theory.

As one of the most important quantum computational models after quantum
finite automata, quantum pushdown automata (QPDA) have been considerably
discussed (Golovkins, 2000; Gudder, 2000; Moore and Crutchfield, 2000). In this
paper, we aim to compare partially their connections, and presenta QPDA more ap-
propriate to a certain extent. QPDA were first introduced in Moore and Crutchfield
(2000), but mainly the so-called generalized QPDA, in which the evolution op-
erators are not required to be unitary or, more relaxedly, isometric. As we know,
computation on quantum computers must be reversible, so we are more interested
in the unitary evolution automata. By using the definition of quantum finite au-
tomata in Kondacs and Watrous (1997), Golovkins (2000) introduced QPDA in an
nonequivalent way, compared with those by Moore and Crutchfield (2000), in a
way, just as the quantum finite automata defined by Kondacs and Watrous (1997)
are different from those by Moore and Crutchfield (2000). Although the QPDA
by Golovkins (2000) satisfy the unitary condition on evolution, the transition
amplitude function is required to fulfil the so-called well-formedness conditions
that are considerably complicated and tedious. So we also hope to simplify them.
Notably, Gudder (2000) also presented the definition of QPDA by directly general-
izing the classical deterministic pushdown automata (Hopcroft and Ullman, 1979).
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However, the transition operators defined in Gudder (2000) are just isometric but
not unitary. Therefore in what follows, our purpose is to attempt to establish a
more satisfactory QPDA, and to deal with some of its properties.

The organization of this paper is as follows: In Section 2, we progagen-
tum pushdown automatg@QPDA) and also preliminarily compare them with the
existing QPDA by Moore and Crutchfield (2000), Gudder (2000), and Golovkins
(2000). Particularly, we demonstrate the equivalence betgy®&DA and QPDA
by Moore and Crutchfield (2000) with accepting words by control states. We also
indicate thatgQPDA are at least as powerful as QPDA defined by Moore and
Crutchfield (2000) with accepting words by empty stack. In Section 3, we intro-
duce the quantum languages accepted®¥DA, that is,n-q quantum context-
free language, and prove that every quantum context-free language is also
n’-q quantum context-free language for ap¥ [0, 1) andy’ € (0, 1). Finally, in
Section 4, we summarize the results obtained and propose some open problems
for further study.

2. THE EQUIVALENCE BETWEEN QPDA

For convenience to understand our definition, let us first briefly recall classical
pushdown automata (Hopcroft and Uliman, 1979).

A pushdown automatM is a system Q, X, I, §, 0o, Zo, F), whereQ is
a finite set of statesy is an input alphabef is a stack’ alphabetyy € Q and
Zy € T are called initial state and initial stack symbol, respectivElg Q is the
set of final states; anél is a mapping fromQ x (X U {€}) x I to P(Q x I'*).
Furthermore, if the mappingysatisfies (1¥(q, a, Z) contains at least one element
foranyg € Q,a € X U{e}andZ € I",and (2%(q, €, Z) being nonempty implies
thaté(q, a, Z) is nonempty and vice versa, for agye Q, Z € I anda € %, then
M is called deterministic.

There are two fashions to define the languad®l) accepted byM, that
is, one is by final state and the other by empty stack. As we know, they are
exactly equivalent, but for QPDA the problem is still open. Notably, in Moore and
Crutchfield (2000) the authors showed that quantum language accepted by empty
stack is also accepted by control state, but the other hand is not yet clear. In this
paper, we mainly consider the case of accepting language by control states. Now
we give a definition of QPDA. To avoid confusing with others, we cajlPDA.

Definition 1. A g gQPDA is a six-tupled = (Q, X, T, §, S, Q¢) where

(i) Q is afinite set of states;
(i) X is aninput alphabet;
(i) T is a stack alphabet;
(iv) S={(pi,ai,C):pi€Q, l'*,¢ceC,i=1,...,k} for some
natural numbek with =K ,|¢i|> = 1 is a particular set called the set
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of start symbols. (It is different from the classical pushdown automata in
which only one initial statgp € Q and one initial stack symbd, € T’
are required, and so in this definition the initial symbol may be looked
as a superposition of some states and strings of stack symbols.)

(v) Q¢ € Qisthe set of final states;

(vi) & is a mapping fromQ x I'* x ¥ x Q x I'* to C satisfying for any
o € X and any 01, y1), (P2, y2) € Q x I'*,
(1) 8(p1, y1, o, P2, y2) canbe nonzero amplitude onlytif; = y2, y1 = tys,
ory; = y, forsomet e T.

(”) ZQGQ,VEF*S(pli Y1, 0,Q, V)S(DZ, Y2, 0,4, }/)*

1, if(p1, y1) = (P2 7/2)
0, otherwise

() Zpeqyer-18(p, v, 0, P\, ¥)I? = Lforany (', y) € Q x I'*.

We define aquantum languagescognized byjQPDA A as a function

faw)y= > | Y > 8(pi, ai, 01, G1, ¥1)

Qs ,yn€l™* (Pi,i,G)eS  Ou,eeOn-2€Q, Y1, Yn-16T*

X 8(qla Y1, 02, q21 J/Z) tee S(anla ¥n—1, On, Qnu Vn)|2 (1)
foranyw = o, --- 0, € £*, and
fa@) =Y o]
ieSt

where S; ={i : (pi,@i,C) €S p € Q¢}. Particularly, if Sf=¢ then
fA(E) =0

By repeatedly utilizing (1) and Definition 1 (Il), one can verify that for any
qQPDA A with input alphabet, then f 4(w) € [0, 1] for any wordsw € X*.
Now we give an example afQPDA.

Example 1. Let A = ({a1, G2}, {0, I, {B, R, G}, §, {(th, R, 1)}, {a2}), wheresis
defined as follows: For any € {B, R, G}*

S(qu Rya O!qu B R)/) = 4(% + ?l) 5(QZ, R'}/, O,ql, BR)/) = 4

5(qu, Ry, 0,01, BRy) = *2i 5(cz, Ry, 0,01, GRy) = 2(% — i)
8(cu, By, 1,G1, BBy) = *2(*2 — %i) 5(q2 By, 1,01, BBy) =11

(0w, By, 1,01, GBy) = —3 — § 5(c, By, 1,q1, GBy) = 2 (2 + i)
5(dz, Gy, 0,02, GGy) oI 5(ch, Gy, 0,02, GGy) = § + ¥i

1
=3
8(02, Gy, 0,0p, y) = —3 + ¥i 3(ar, Gy, 0,02, ) = 5 + ¥
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One can check readily that the above definitibis agQPDA. Furthermore, it is
easy to calculate that, (010) = */75 andf 4(¢) = 1.

To compare with the QPDA by Moore and Crutchfield (2000) we present
a more intuitive definition that is closely related to those defined in Moore and
Crutchfield (2000).

Definition 2. A QPDA is afive-tupleM = (Hq ® Hr, >, ISnit), U, P(Haccep)
where Hg is a finite-dimensional Hilbert space with an orthonormal basis vec-
tors Q (control states) andHr is an infinite-dimensional Hilbert space whose
orthonormal basis vectors correspond to finite words over a stack alphabet
3 is an input alphabetsy;t) is a unit initial vector of a superposition of finite
basis vectors itHg ® H;, that is,|snit) has a representation as followsiit) =
Zikzl Glp) ® laj) wherep;, € Q, e € T*, ¢ € Cwith ZiK=1 ICi |2 =1, HacceptiS
a closed subspace ¢fg ® Hr spanned by the s¢{q) ® |y) : g € Qaccept ¥ €
I'*} for someQacceptS Q; U : X U {€} — U(Hg ® Hr) satisfies: for any € X
andany@s, »1), (G2, 2) € Q x I'*, the transition amplitud@) (o')(ch ® 1), G ®
y2), that is, (y2|(dz|U (o)|d1)[y1) can be nonzero only ify; = y2, y1 = ty, or
y1 = yo for somet € T'.

We define the language recognized by QPDAabove as

fM(W) = ” P(Haccep)u (W)|3nit> ||2

foranyw € T*.

Remark 1. In Moore and Crutchfield (200(acceprin Definition 2 is defined as
a closed subspace spannedfay ® {€} : q € Qaccept fOr SOMEQacceptS Q, and
in this case we callM an MCQPDA here. Meanwhile, it is well worth noticing
that Hacceptn Definition 2 is exactly equal to the subspace spanngdid)y® |y) :

g € Qaccept ¥ € IT'*} sincel'* is an orthonormal basis ¢y

Lemma 1. (see Lemma 13 in Moore and Crutchfield (2000 quantum lan-
guage is accepted by a QPDA by empty stéokthis case, Bceptis a closed
subspace spanned by) ® {¢} : q € Q}), thenitis also accepted by some QPDA
by control stateg(that is, HicceptiS @ closed subspace spanned{ly) ® |y : g €
Qaccept ¥ € T} for some Qccep)-

It directly follows from Lemma 1 that a quantum language accepted by an
MCQPDA is also accepted by some QPDA, but the converse conclusion is not
clear yet. As for the relation betwee®PDA and QPDA, we have the following
theorem which shows that the classes of languages accepted by them are exactly
equivalent. SoyQPDA are at least as powerful as QPDA by Moore and Crutchfield
with accepting words by empty stack.
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Theorem 2. (1) For any qQPDAA = (Q, %, T, 4, S, Qi), there exists QPDA
M such that fy(w) = faq(w) for any we *. (2) For any QPDAM = (Ho ®
Hr, 2, Sinit, U, P(Haccep)), there exists gQPDA such that f(w) = fa(w) for
anywe X%,

Proof: We just present the proof for (1), because in fact, the process of proof
for (2) is more simple relativela/. Suppose that= {(pi, @i, G): pi € Q, i €

I* ¢ eC,i =1,...,K}with ), |ci|? = 1, then constructM = (Hgq ® Hr,

%, Snit, U, P(Haccep)) where |Sinit) = Z:(=1 G| pi) ® |ai), and Haccept that is a
closed subspace ¢ ® Hr, is spanned by|q) ® |y) : g € Qs, y € I'*}; and
foranyo € X, U(o) is defined as follows: for anyg( y) € Q x I'*,

U)oy ®ly)= Y. av.od,y)d) @) 2
q'eQ,y’er*

Now we have to show thdll (¢) can be extended to be a unitary operator on
Ho ® Hr. First, it follows from (2) that for any, g, € Q and anyyy, y» € T'*,

(U)(laz) ® 1y1), U (o)) @ [y2)))

:< Y. 8 0, ap, v)(lap) © [v)),

0 eQ,y el

> 802 200 G )10 ® IVz/))>

Qp€Q, ypel*

= Z 8(d1, y1, 0,9, ¥) - 8(t, ¥2, 0, 4, ¥)"
qeQ,yel*

1, if(Qu, y1) = (02, 2),

= (|Q1) &® |V1>’ |CI2> ® |V2>> = {0’ otherwise

Soford 72, ci A with Y72, |ci|?> < oo, whereA € {|g) ® |y) :q € Q,y € I'*},
we may defindJ (o)(3 72, ¢ A) =Y 2, cU (o)A and easily show thatu (o)
)l = |lly) || forany|y) € Ho ® Hr and any € . Next let us define operator
U(o) overHg ® Hr as

Ue)(aely)= > 8d.v,ody)d) el
q'eQ,y’el’*

forany @, y) € Q x I'*. Then it easily follows from Definition 1 (lll) thatU (o)’
(19) ® [yl =1 for any €, y) € Q x I'*, and thus operatdd (¢)’ can be ex-
tended toHg ® Hr as extending) (c) above. Now we have

Ue)U(o)(la) ® |y))
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= U(U)/ ( Z S(qv YV, 0, q/i J//)(|q/) & |V/)))

q€Q,y’el*

= ). (6(q,y,a,q’,y’)< > S(q”,y”,o,q’,y’)*(|q”>®|y”>)))

q'eQ,y’el* q"eQ,y”el*

= Y ( > 6(q,y,o,qhy’m(q”,y’ﬁmqﬁy’)*)(|q”>®|y”>)
q"eQ,y"el'* \q'eQ,y’el*

=1[q) ®1y)

and similarlyU (a)U (o) (19) ® 1)) = |19) ® |¥)). SoU(¢) = U(s)~* and thus
U(o) is subjective. It follows from the basic properties of Hilbert spaces that
operatorU (o) is unitary. The remainder of the proof is to show tHag(w) =
fr(w) for anyw € ¥*. Consider two cases.

Casel. w=e.RecallS; ={i:(p,i,c)eS p € Q¢}, then

fa€) =) lal?

iESf
and

fri(e) = |l P(HaccepNSnit)”2

k
> <Zq|pi>®m>,|q>®|y>>|q>®|y>

qeQs,yel* \i=1

= 3 I6f = fafe).

pieQs

2

Case2. w=oj - - op € &*. Foranyq € Q andy € I'*, we have

(UW)lsnic), [9) @ [v))

K
= <U(0n) < U(on) ) clp) ® lai), 19) ® |V)>

i=1

K
ZCi (U(on) ... U(o2)
i—1

x > (P ey o dr (1) ® |V1>)>7 a) ® |J/)>

heQ,y1el*
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K
=Zci Z 5(pi,01i,01,Q1,J/1)<U(0n"'U(Gs)

i=1 h€Q, 1€l

X( > 3(%)/1,02,(12,J/z)(IQZ>®|V2))>,IQ)®IV>>

02€Q, y2€l'*

K
=>a > > 8P i, 01, G, 1) - 80, v1, 02, G, ¥2)

1 meQ,yel* q2eQ,y2el™
(U(on) --- U(o3)(lt) ® 172), |d) ® |y))

k n—1
=> G > 5(pir o, 01, G, v1) - [ |
i=1 qeQ,pel*i=1,..,n i=1
x 8(dj, ¥j, 0j+1, Aj+1, ¥i+1)(Gn) ® [vn), [A) ® [¥))

K n—2
j=1

i=1 g €Q,yielr*i=1,..,n-1

X

X 8(Qj, ¥jr Oj+1, Aj+1s Vj+1) - 8(On-1, ¥n-1, on, A, ¥).

So
fM(W) = || P(Haccep)u (W)|3nit> ||2
= Y KUW)Isn), la) ® [y)I?
qeQ,yer*
k
= Z Zci Z S(pi!ailallqll yl)
qeQ,yel* |i=1 qeQ,pel*i=1,..,n-1
n—2 2
x| 1 8(dj, ¥jr Oj+1s Aj+1 Vi+1) - 6(On-1, Yn—1, On, Qs ¥)
j=1
By combining the above two cases, we complete the proof. O

Remark 2. By utilizing Theorem 2 (1), one can straightforward construct a QPDA
M thatis equivalent to thgQPDA defined as Example 1 as followst = (Hg ®

Hr, 2, Snit, U, P(Haccep)) WhereHg and Hr are two closed spaces spanned by
Q = {lo), laz)} and{|y) : ¥ € {B, R, G}*}, respectivelyHacceptS a closed space
of Ho ® Hr and itis spanned bfidz) ® |y) 1y € T'*}; X = {0, 1; [Snit) = |01);
andU is defined in terms of Eq. (2) and thhén Example 1.
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Remark 3. From the above proofitis seen that the transition operators (please see
(2)) derived frongQPDA can be extended to be unitary. In Section 1, we mentioned
various QPDA in the literature. To see the more advantages af@RDA, we
further outline briefly some other QPDA by Gudder (2000) and Golovkins (2000).
However, the QPDA defined by Golovkins require considerable conditions, so we
refer to Golovkins (2000) for the details. In Gudder (2000), a QPDA is defined as a
four-tuple4 = (Q, %, T, §), whereQ, X, I' are as igQPDA (see Definition 1),

and transition amplitude functignfrom Q x I' U {¢} x X x Q x ' U { p} where

p means to pop a stack symbol off, to C satisfies

ZS(S, v, X, 1, 0)8(8, v, X, I, 1)* = 8sg, (3)
rt

for everyv € {e} UT;

> 8(s, v, x, 1, PSS,V X, 1, p)* =0, (4)

for everyv, Vv’ € {e} U T, withv # Vv'; and

ZS(S, v, X, 1, t)8(s,V, X, 1, p)* =0, (5)

foreveryt e I',v € {¢} UT, V' € I'. Gudder showed that the transition operators
defined in terms 08 are isometric if and only if the above three conditions (3)—
(5) hold. So the transition operators in Gudder's QPDA are not unitary but just
isometric, and notably, to a certain extent, Gudder's QPDA may be looked as a
special case ajQPDA.

3. QUANTUM LANGUAGES

In this section, we investigate some of the properties of quantum languages
recognized byjQPDA.

Definition 3. For any n €[0,1), an n-q quantum context-free language
(n- gQCFL) is defined as the séiv: f4(w) > 5} denoted byL ,(A) for some
qQPDA A.

Theorem 3. If L =L,(A) is anyn-qQCFL forO < 5 < 1, then L is also an
n’-qQCFL forevenf0< 5’ < 1.

To prove Theorem 3 we need a lemma which shows that under certain con-
ditions, a weighted suraf + bg, wherea + b = 1, of qQCFLs f andgis also a
gQCFL.
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Lemma 4. LetA =(Q;, =, T, 5,5, QY) be qQPDA, i= 1, 2 where Q N
Q. = @. Then for any ab e C with |a|? + |b|? = 1, there exists qQPDA with
input alphabet® such that

fa(w) = [al? f.a,(w) + [bI* .1, (W). (6)
Proof: Assume that§ = {(P?),a?), cgi)): pji) € Qiy()l?) e+, c(ji) €eC,j=
L. kpwith Y 12 =1,i =1,2. LetA = (Q1U Qz, =, T4, S, QP U
Q) where s={(p™, (", ad): pi € Q0P e, P ecCj=1,...,
ki) U{(p?, a2, ad?): p@ ¢ Qp 0P e T*,cP e C, j =1,..., k), 6 is def-
ined as follows: for anyd;, vi) € (Q1 U Q2) x ' and anys € X,i =1, 2,

81(a1, y1, 0, 2, ¥2), ?f 01, 0 € Qu,
8(Qw, Y1, 0, O2, ¥2) = § 61(01, 1, 0, U2, ¥2), if 1, Q2 € Qo,
0, otherwise.

Now S satisfiesZ'fz1 |ac§l)|2 + Zlle |bc§2)|2 =a’+b?>=1anditis easy to
check thats meets the conditions (1), (Il), and (lll) in Definition 1. Sé is a
gQPDA. By utilizing the definitions off 4, f4,, and f 4,, one has no difficulty in
getting (6) and we omit the details here. O

The proof of Theorem 3: Assume thatd = (Q, S, , 8, Q¢) whereS = {(p,
@i,G):peQ,a eT*,c eC,i =1,...,k} with Zik:1|ci |2 = 1. We discuss
it by two cases.

Case 1. 0< 5/ < n< 1. LetA; = ({0o, G}, =, T, 81, S, Q%)) where{qo, 01}

NQ =0, S ={(0o e, Co)iaoel* coeC} with oo =1,QF = {an}
andg; is defined as follows: for any € X, and anyy € I'*, §1(Qo, ¥, 0, Qo, ) =
81(q1, ¥, 0, 01, ¥) = 1, and 0 otherwise. Then by a simple calculation one can see
that A; is aqQPDA and f 4,(w) = O for anyw € £*. According to Lemma 4,

for any a, b € C with |al? + |b|> = 1, we may construct gQPDA A’ = (Q U

{00, au}, =, T, 8, S, Q1 UQY) where S = {(pi, i, ag), (do, o, beo) :pi, o,

G asinS/i =1,...,k} andd’ is defined as in the proof of Lemma 4. Then
it easily follows from the definition of 4 that for anyw € X*,
Faw) = [al? f4(w) + [bI* f.4,(W) = a]* f.a(w). (7)

Specially, takea = \@ candb = /17, then by (7)f.4(w) > n if and only if
fa(w) > 5" and thereford,(A) = L, (A).
Case 2. 0<n<n' <1 Let A= ({do}, Z,T, 82, S, {ao}) where qp € Q,

S = {(qo, oo, Co) : g € T'*, g € C} with |cg| = 1 andé; is defined as follows:
foranyo € ¥ and anyy € I'*, 82(qo, ¥, 0, o, ¥) = 1 and 0 otherwise. Theniitis
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easy to see thatl, is a gqQPDA and f4,(w) =1 for anyw € £*. With A
and A, we construct agQPDA in terms of Lemma 4 as follows4” = (QU

{ao}, £, 1,8", 8, Qr U{ao}) where S’ = {(pi, ai, aG), (do, @0, bc) : i, i, Ci
asinS i =1,...,k} with |a>+ |b|> = 1,8" is defined as’ in the proof of
Lemma 4. Now sinced 4,(w) = 1 for anyw € ¥*, we have

f (W) = |al® f 4(W) + [b]* f4,(W) = |a* f 4(W) + [b]%.

Let|al = /11%’,77' and|b| = /4=, then

1-9 n'—n
far(w) = - falw) + 1y

and it thus yields thaf 4-(w) > »’ if and only if f4(w) > 7, thatis,L,(A) =
L, (A") also holds. Hence, the proof has been completed. O

4. CONCLUSION AND SOME PROBLEMS

We have proposegiQPDA, which, to a certain extent, have some advantages
than the other QPDA, which are embodied as follows: (i) quantum languages
recognized by MCQPDA (which was defined by Moore and Crutchfield (2000))
with empty stack are also accepted by s@@® DA (i) Gudder's QPDA (Gudder,
2000) may be looked as a special casg@PDA, and particularly the transition
operators inQQPDA are exactly unitary, but those on Gudder’'s ones are just
isometric; (iii) compared with QPDA by Golovkins (2000) the conditions for
transition functiors onqQPDA are relatively relaxed (indeed, those conditions in
Golovkins (2000) are considerably complicated). We also discussed the properties
ofthe languages acceptedd@PDA, and especially prove that everg quantum
context-free language is algbgq quantum context-free language for ang [0, 1)
andn’ € (0, 1), which is interesting and corresponding to the similar property on
quantum regular languages investigated in Gudder (1999). Of course, to a great
extent, the strengths or weaknesses of automata may be manifested from their
recognizable ability, so there are three problems deserving to be further studied:

1. Howto establish appropriate quantum grammars that derive the same class
of languages as that lfQPDA? Indeed, we have given quantum regular
grammars deriving the same class of languages as that by quantum finite-
state automata (Qiu and Ying, manuscript submitted for publication).

2. Languages accepted by quantum finite-state automata in Moore and
Crutchfield (2000) are recognized by some MCQPDA (Moore and
Crutchfield, 2000) and thus also by sogq@PDA. However, there are reg-
ular languages but not quantum regular languages, in other words, some
regular languages cannot be accepted by any quantum finite-state automa-
ton in Moore and Crutchfield (2000). Naturally, one may ask whether
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any regular language can be recognized)@PDA? Notably, Golovkins
(2000) showed that every regular language is recognizable by some QPDA
defined by himself.

3. What about the recognizable ability @QPDA compared with classical
pushdown automata (Hopcroft and Uliman, 1979) and probabilistic push-
down automata (Macarie and Ogihara, 1998)?
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